Development of a 3D porous chitosan/gelatin liver scaffold for a bioartificial liver device

用于生物人工肝装置的三维多孔壳聚糖/明胶肝支架的开发

阅读:10
作者:Yung-Te Hou, Chao-Chun Hsu

Abstract

Functional artificial livers (FALs), with embedded hepatocytes that perform the functions of a normal liver, have been developed during the past decades. It is important to note that the liver scaffold, which is a biologically functional core of bioartificial livers, plays a vital role in the bio-cartridge within a bioartificial liver. In this study, a three-dimensional (3D) liver scaffold for in vitro cultures was fabricated by freeze-drying a chitosan/gelatin (CG) solution. A CG scaffold has advantages such as (i) inexpensive and easy-to-make; (ii) easy to fabricate with varying compressive modulus by changing the concentration of glutaraldehyde; (iii) non-cytotoxicity; and (iv) porous structure is similar to extracellular matrix (ECM), thus facilitating hepatocyte adhesion and proliferation. The results revealed that the compressive modulus and maintainability of a CG scaffold was correlated to the increase in glutaraldehyde. Furthermore, hepatocyte viability and hepatic functions showed the best performances with a 0.61% glutaraldehyde-CG scaffold. This CG scaffold not only had higher hepatocyte biocompatibility and mechanical strength, but also maintained hepatic functions and viability in vitro cultures; especially, the mechanical properties of 0.61% glutaraldehyde-CG scaffold were very similar to those in normal liver. The CG scaffold as a liver scaffold may have high potential for further bioartificial liver design in the near future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。