Aldolase promotes the development of cardiac hypertrophy by targeting AMPK signaling

醛缩酶通过靶向 AMPK 信号促进心脏肥大的发展

阅读:7
作者:Yapeng Li, Dianhong Zhang, Lingyao Kong, Huiting Shi, Xinyu Tian, Lu Gao, Yuzhou Liu, Leiming Wu, Binbin Du, Zhen Huang, Cui Liang, Zheng Wang, Rui Yao, Yanzhou Zhang

Abstract

Metabolic dysfunction is a hallmark of cardiac hypertrophy and heart failure. During cardiac failure, the metabolism of cardiomyocyte switches from fatty acid oxidation to glycolysis. However, the roles of key metabolic enzymes in cardiac hypertrophy are not understood fully. Here in the present work, we identified Aldolase A (AldoA) as a core regulator of cardiac hypertrophy. The mRNA and protein levels of AldoA were significantly up-regulated in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced hypertrophic mouse hearts. Overexpression of AldoA in cardiomyocytes promoted ISO-induced cardiomyocyte hypertrophy, whereas AldoA knockdown repressed cardiomyocyte hypertrophy. In addition, adeno-associated virus 9 (AAV9)-mediated in vivo knockdown of AldoA in the hearts rescued ISO-induced decrease in cardiac ejection fraction and fractional shortening and repressed cardiac hypertrophy. Mechanism study revealed that AldoA repressed the activation of AMP-dependent protein kinase (AMPK) signaling in a liver kinase B1 (LKB1)-dependent and AMP-independent manner. Inactivation of AMPK is a core mechanism underlying AldoA-mediated promotion of ISO-induced cardiomyocyte hypertrophy. By contrast, activation of AMPK with metformin and AICAR blocked AldoA function during cardiomyocyte hypertrophy. In summary, our data support the notion that AldoA-AMPK axis is a core regulatory signaling sensing energetic status and participates in cardiac hypertrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。