Accuracy of peak-power compensation in fiber-guided and free-space acoustic-resolution photoacoustic microscopy

光纤引导和自由空间声学分辨率光声显微镜中峰值功率补偿的精度

阅读:12
作者:Amir Asadollahi, Hamid Latifi, Shahriar Zeynali, Manojit Pramanik, Hamed Qazvini

Abstract

Acoustic resolution photoacoustic microscopy (AR-PAM) has gained much attention in the past two decades due to its high contrast, scalable resolution, and relatively higher imaging depth. Multimode optical fibers (MMF) are extensively used to transfer light to AR-PAM imaging scan-head from the laser source. Typically, peak-power-compensation (PPC) is used to reduce the effect of pulse-to-pulse peak-power variation in generated photoacoustic (PA) signals. In MMF, the output intensity profile fluctuates due to the coherent nature of light and mode exchange caused by variations in the bending of the fibers during scanning. Therefore, using a photodiode (PD) to capture a portion of the total power of pulses as a measure of illuminated light on the sample may not be appropriate for accurate PPC. In this study, we have investigated the accuracy of PPC in fiber-guided and free-space AR-PAM systems. Experiments were conducted in the transparent and highly scattering medium. Based on obtained results for the MMF-based system, to apply PPC to the generated PA signals, tightly focused light confocal with the acoustic focus in a transparent medium must be used. In the clear medium and highly focused illumination, enhancement of about 45% was obtained in the homogeneity of an optically homogeneous sample image. In addition, it is shown that, as an alternative, free-space propagation of the laser pulses results in more accurate PPC in both transparent and highly scattering mediums. In free-space light transmission, enhancement of 25-75% was obtained in the homogeneity of the optically homogeneous sample image.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。