Taurine and/or inorganic potassium as dietary osmolyte counter the stress and enhance the growth of GIFT reared in ion imbalanced low saline water

牛磺酸和/或无机钾作为膳食渗透压剂可抵消应激并促进在离子不平衡低盐水中饲养的 GIFT 的生长

阅读:4
作者:Rajendran Velselvi, Subrata Dasgupta, Tincy Varghese, Narottam Prasad Sahu, Gayatri Tripathi, Hougaina Panmei, Krishna Pada Singha, Gopal Krishna

Abstract

The effects of dietary osmolytes for alleviating osmotic stress and enhancing growth are not well elucidated in fish reared in inland saline water. The present study evaluated the effects of dietary taurine or potassium (K+) individually or in combination on growth, ionic homeostasis, and stress response of GIFT tilapia reared in potassium deficient low saline water (PDLSW, 10 ppt salinity) mimicking inland saline water. Isonitrogenous and isoenergetic diets supplemented with five potassium concentrations (0, 0.3, 0.45, 0.6 and 0.75 %), two taurine (T) concentrations (0.5 and 1.0 %) and two combinations of both (K+ 0.1 % + T 0.5 % and K+ 0.2 % + T 0.5 %) were fed to GIFT juveniles (4.4 ± 0.02 g body weight) and reared in PDLSW for 45 days. The fish fed on the diet fortifying with K+ 0.2 % + T 0.5 % showed the highest growth performance among the controls and other treatment groups. Dietary supplementation had no effects on PDLSW induced increase in osmoregulatory endpoints. The optimum dietary potassium requirement of GIFT reared in PDLSW was 0.57 and 0.599 g/100 g diet. Dietary K+ down-regulated the PDLSW induced expression of NKAa1, AQP1, and ClC2, whereas inhibited taurine-induced up-regulation of AQP1 and CLC2, which is the first report in tilapia. In addition, dietary K+ and taurine modulated antioxidant and metabolic enzyme activities for easing stress and balancing energy requirements. Thus, blending of potassium (0.2 %) and taurine (0.5 %) in the diet appears best to mitigate stress and enhance GIFT growth reared in inland saline water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。