Ubiquitin-activating enzyme activity contributes to differential accumulation of mutant huntingtin in brain and peripheral tissues

泛素活化酶活性导致突变亨廷顿蛋白在脑和外周组织中的差异积累

阅读:4
作者:Brandy E Wade, Chuan-En Wang, Sen Yan, Kavita Bhat, Brenda Huang, Shihua Li, Xiao-Jiang Li

Abstract

Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded proteins and shares the pathological hallmark of selective accumulation of misfolded proteins in neuronal cells. Polyglutamine expansion in the HD protein, huntingtin (Htt), causes selective neurodegeneration that is more severe in the striatum and cortex than in other brain regions, but the mechanism behind this selectivity is unknown. Here we report that in HD knock-in mice, the expression levels of mutant Htt (mHtt) are higher in brain tissues than in peripheral tissues. However, the expression of N-terminal mHtt via stereotaxic injection of viral vectors in mice also results in greater accumulation of mHtt in the striatum than in muscle. We developed an in vitro assay that revealed that extracts from the striatum and cortex promote the formation of high-molecular weight (HMW) mHtt compared with the relatively unaffected cerebellar and peripheral tissue extracts. Inhibition of ubiquitin-activating enzyme E1 (Ube1) increased the levels of HMW mHtt in the relatively unaffected tissues. Importantly, the expression levels of Ube1 are lower in brain tissues than peripheral tissues and decline in the nuclear fraction with age, which is correlated with the increased accumulation of mHtt in the brain and neuronal nuclei during aging. Our findings suggest that decreased targeting of misfolded Htt to the proteasome for degradation via Ube1 may underlie the preferential accumulation of toxic forms of mHtt in the brain and its selective neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。