A flow cytometric analysis of macrophage- nanoparticle interactions in vitro: induction of altered Toll-like receptor expression

体外巨噬细胞-纳米粒子相互作用的流式细胞术分析:诱导改变的 Toll 样受体表达

阅读:4
作者:Joyce M Njoroge, Jeffrey J Yourick, Mary Ann Principato

Background

Nanoparticles exhibit unique physiochemical characteristics that provide the basis for their utilization. The diversity of potential and actual applications compels a thorough understanding regarding the consequences of their containment within the cellular environment.

Conclusion

Taken together, these results implicate the more mature macrophage in the ingestion of Ag NP; and an influence upon at least one of the Toll receptors present in macrophages following exposure to Ag NP. Further, our flow cytometric approach presents a potentially viable detection method for the identification of occult Ag NP material using an indicator cell line.

Methods

Cells were cultured with varying concentrations of citrate-buffered Ag nanoparticle and analyzed for changes in cellular volume, fluorescence emissions, and surface receptor expression.

Purpose

This paper presents a flow cytometric examination of the biologic effects associated with the internalization of citrate-buffered silver (Ag) nanoparticles (NP) by the murine macrophage cell line, RAW264.7. Materials and

Results

Notable changes in side scatter (SSC) signal occurred following the phagocytosis of citrate-buffered Ag NP representative of the 10 nm, 50 nm, and 100 nm particle size by cultured RAW 264.7 cells. A characteristic associated with the internalization of all the citrated Ag NP sizes tested, was the detection of emitted infra-red and near-infrared wavelength emissions. This characteristic consistently permitted the detection of 10 nm, 50 nm, and 100 nm Ag NP particles internalized within the RAW cells by flow cytometry. A functional distinction between monocyte subsets within the RAW 264.7 cell line was noted as Ag NP are taken up by the F4/80+ subset of cells within the culture. Further, the internalization of Ag NP by the cells resulted in an increased cell surface expression of the Toll-like receptor (TLR) 3, but not TLR4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。