Modelling reoxygenation effects in non-small cell lung cancer cell lines and showing epithelial-mesenchymal transition

模拟非小细胞肺癌细胞系中的复氧效应并显示上皮-间质转化

阅读:4
作者:Joanna Kapeleris, Juliana Müller Bark, Shanon Ranjit, Derek Richard, Ian Vela, Kenneth O'Byrne, Chamindie Punyadeera

Conclusion

Our data suggest that when investigating CTCs as a prognostic biomarker in NSCLC, it is also essential to take into consideration EMT status to obtain a comprehensive overview of CTCs in circulation.

Methods

To mimic in vivo oxygen variations and effects on CTCs, we have cultured five non-small cell lung cancer (NSCLC) cell lines under normoxic and hypoxic conditions, followed by a pulse of reoxygenation for 4 h.

Purpose

Circulating tumour cells (CTCs) are a rare cell subpopulation regulated by the tumour microenvironment. In hypoxic conditions, CTCs are able to invade the lymphatic and circulatory systems leading to metastasis at distant sites.

Results

Proliferation, spheroid-formation and colony formation ability under varying O2 levels were investigated. Proliferation rate was not altered when cells were cultured in 2D models under hypoxic conditions. However, we observed that hypoxia enhanced in vitro formation of tumour-spheres and accelerated clonogenicity of NSCLC cell lines. In addition, cells exposed to hypoxia and reoxygenation conditions showed altered expression of epithelial-mesenchymal transition (EMT) related genes in NSCLC cell lines both at mRNA (AKT1, CAMK2NH1, DESI1, VIM, MAP1B, EGFR, ZEB1, HIF1α) and protein levels (Vimentin, Pan-cytokeratin).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。