In vitro prevention of salmonella lipopolysaccharide-induced damages in epithelial barrier function by various lactobacillus strains

不同乳酸杆菌菌株体外预防沙门氏菌脂多糖引起的上皮屏障功能损害

阅读:7
作者:Chun-Yan Yeung, Jen-Shiu Chiang Chiau, Wai-Tao Chan, Chun-Bin Jiang, Mei-Lien Cheng, Hsuan-Liang Liu, Hung-Chang Lee

Abstract

Background. Lactobacillus shows beneficial anti-inflammatory effects on Salmonella infection. The maintenance of the tight junction (TJ) integrity plays an importance role in avoiding bacterial invasion. Whether Lactobacillus could be used to regulate the TJ protein expression and distribution in inflamed intestinal epithelial cells was determined. Methods. Using the transwell coculture model, Salmonella lipopolysaccharide (LPS) was apically added to polarized Caco-2 cells cocultured with peripheral blood mononuclear cells in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with various Lactobacillus strains. TJ integrity was determined by measuring transepithelial electrical resistance across Caco-2 monolayer. Expression and localization of TJ proteins (zonula-occludens- (ZO-) 1) were determined by Western blot and immunofluorescence microscopy. Results. Various strains of Lactobacillus were responsible for the different modulations of cell layer integrity. LPS was specifically able to disrupt epithelial barrier and change the location of ZO-1. Our data demonstrate that Lactobacillus could attenuate the barrier disruption of intestinal epithelial cells caused by Salmonella LPS administration. We showed that Lactobacillus strains are associated with the maintenance of the tight junction integrity and appearance. Conclusion. In this study we provide insight that live probiotics could improve epithelial barrier properties and this may explain the potential mechanism behind their beneficial effect in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。