miR‑6835‑3p regulates the function of pancreatic islet cells by modulating the expression of AdipoR1

miR-6835-3p 通过调节 AdipoR1 的表达来调节胰岛细胞的功能

阅读:10
作者:Huimin Wang, Lei Jiang, Zhenfu Li, Wei Wang, Chuanji Hao

Abstract

Effective drugs and strategies for treating type 2 diabetes mellitus (2‑DM) are urgently required. The aim of the present study was to elucidate the mechanism underlying microRNA (miR)‑6835‑3p regulation of adiponectin receptor 1 (AdipoR1) expression and the miR‑6835‑3p/AdipoR1 signaling pathway in pancreatic islet cells. In addition, the potential anti‑diabetes effect of miR‑6835‑3p on insulin secretion was investigated. Luciferase activity analysis was performed to evaluate how miR‑6835‑3p targets the 3'‑untranslated region of AdipoR1. The SU.86.86 and MIN‑6 cell lines were co‑cultured with or without miR‑6835‑3p inhibitors or mimics, and the insulin secretory functions of these cell lines were then determined. Luciferase reporter analysis revealed that AdipoR1 was a direct target of miR‑6835‑3p. In addition, miR‑6835‑3p overexpression suppressed the mRNA and protein expression levels of AdipoR1 in the SU.86.86 and MIN‑6 cell lines. Furthermore, miR‑6835‑3p exerted negative effects on insulin secretion in SU.86.86 and MIN‑6 cells, which were mediated by regulating AdipoR1 expression. AdipoR1 was a direct target of miR‑6835‑3p; therefore, inhibition of AdiopR1 expression may reduce insulin secretion and may be considered a key regulator of insulin secretion. The results of the present study suggested that targeting AdipoR1 with miR‑6835‑3p inhibitors may be a potential strategy for promoting glucose‑stimulated insulin secretion, and thereby, may be an effective treatment for type 2‑DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。