Resveratrol induced reactive oxygen species and endoplasmic reticulum stress‑mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line

白藜芦醇诱导 A375SM 恶性黑色素瘤细胞系活性氧和内质网应激介导的细胞凋亡以及细胞周期停滞

阅读:6
作者:Jae-Rim Heo, Soo-Min Kim, Kyung-A Hwang, Ji-Houn Kang, Kyung-Chul Choi

Abstract

Resveratrol, a dietary product present in grapes, vegetables and berries, regulates several signaling pathways that control cell division, cell growth, apoptosis and metastasis. Malignant melanoma proliferates more readily in comparison with any other types of skin cancer. In the present study, the anti‑cancer effect of resveratrol on melanoma cell proliferation was evaluated. Treating A375SM cells with resveratrol resulted in a decrease in cell growth. The alteration in the levels of cell cycle‑associated proteins was also examined by western blot analysis. Treatment with resveratrol was observed to increase the gene expression levels of p21 and p27, as well as decrease the gene expression of cyclin B. In addition, the generation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress were confirmed at the cellular and protein levels using a 2',7'‑dichlorofluorescein diacetate assay, TUNEL assay and western blot analysis. Resveratrol induced the ROS‑p38‑p53 pathway by increasing the gene expression of phosphorylated p38 mitogen‑activated protein kinase, while it induced the p53 and ER stress pathway by increasing the gene expression levels of phosphorylated eukaryotic initiation factor 2α and C/EBP homologous protein. The enhanced ROS‑p38‑p53 and ER stress pathways promoted apoptosis by downregulating B‑cell lymphoma‑2 (Bcl‑2) expression and upregulating Bcl‑2‑associated X protein expression. In conclusion, resveratrol appears to be an inducer of ROS generation and ER stress, and may be responsible for growth inhibition and cell cycle arrest of A375SM melanoma cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。