SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation

SPCA2 调节 Orai1 运输并在哺乳模型中储存独立的 Ca2+ 进入

阅读:6
作者:Brandie M Cross, Anniesha Hack, Timothy A Reinhardt, Rajini Rao

Abstract

An unconventional interaction between SPCA2, an isoform of the Golgi secretory pathway Ca(2+)-ATPase, and the Ca(2+) influx channel Orai1, has previously been shown to contribute to elevated Ca(2+) influx in breast cancer derived cells. In order to investigate the physiological role of this interaction, we examined expression and localization of SPCA2 and Orai1 in mouse lactating mammary glands. We observed co-induction and co-immunoprecipitation of both proteins, and isoform-specific differences in the localization of SPCA1 and SPCA2. Three-dimensional cultures of normal mouse mammary epithelial cells were established using lactogenic hormones and basement membrane. The mammospheres displayed elevated Ca(2+) influx by store independent mechanisms, consistent with upregulation of both SPCA2 and Orai1. Knockdown of either SPCA2 or Orai1 severely depleted Ca(2+) influx and interfered with mammosphere differentiation. We show that SPCA2 is required for plasma membrane trafficking of Orai1 in mouse mammary epithelial cells and that this function can be replaced, at least in part, by a membrane-anchored C-terminal domain of SPCA2. These findings clearly show that SPCA2 and Orai1 function together to regulate Store-independent Ca(2+) entry (SICE), which mediates the massive basolateral Ca(2+) influx into mammary epithelia to support the large calcium transport requirements for milk secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。