Microtubule depolymerization contributes to spontaneous neurotransmitter release in vitro

微管解聚有助于体外自发神经递质释放

阅读:6
作者:Cecilia D Velasco, Rachel Santarella-Mellwig, Martin Schorb, Li Gao, Oliver Thorn-Seshold, Artur Llobet

Abstract

Microtubules are key to multiple neuronal functions involving the transport of organelles, however, their relationship to neurotransmitter release is still unresolved. Here, we show that microtubules present in the presynaptic compartment of cholinergic autaptic synapses are dynamic. To investigate how the balance between microtubule growth and shrinkage affects neurotransmission we induced synchronous microtubule depolymerization by photoactivation of the chemical inhibitor SBTub3. The consequence was an increase in spontaneous neurotransmitter release. An analogous effect was obtained by dialyzing the cytosol with Kif18A, a plus-end-directed kinesin with microtubule depolymerizing activity. Kif18A also inhibited the refilling of the readily releasable pool of synaptic vesicles during high frequency stimulation. The action of Kif18A was associated to one order of magnitude increases in the numbers of exo-endocytic pits and endosomes present in the presynaptic terminal. An enhancement of spontaneous neurotransmitter release was also observed when neurons were dialyzed with stathmin-1, a protein with a widespread presence in the nervous system that induces microtubule depolymerization. Taken together, these results support that microtubules restrict spontaneous neurotransmitter release as well as promote the replenishment of the readily releasable pool of synaptic vesicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。