Multiomic Strategies Reveal Diversity and Important Functional Aspects of Human Gut Microbiome

多组学策略揭示人类肠道微生物组的多样性和重要功能方面

阅读:3
作者:Ravi Ranjan, Asha Rani, Patricia W Finn, David L Perkins

Abstract

It is well accepted that dysbiosis of microbiota is associated with disease; however, the biological mechanisms that promote susceptibility or resilience to disease remain elusive. One of the major limitations of previous microbiome studies has been the lack of complementary metatranscriptomic (functional) data to complement the interpretation of metagenomics (bacterial abundance). The purpose of this study was twofold, first to evaluate the bacterial diversity and differential gene expression of gut microbiota using complementary shotgun metagenomics (MG) and metatranscriptomics (MT) from same fecal sample. Second, to compare sequence data using different Illumina platforms and with different sequencing parameters as new sequencers are introduced, and to determine if the data are comparable on different platforms. In this study, we perform ultradeep metatranscriptomic shotgun sequencing for a sample that we previously analyzed with metagenomics shotgun sequencing. We performed sequencing analysis using different Illumina platforms, with different sequencing and analysis parameters. Our results suggest that use of different Illumina platform did not lead to detectable bias in the sequencing data. The analysis of the sample using MG and MT approach shows that some species genes are highly represented in the MT than in the MG, indicating that some species are highly metabolically active. Our analysis also shows that ~52% of the genes in the metagenome are in the metatranscriptome and therefore are robustly expressed. The functions of the low and rare abundance bacterial species remain poorly understood. Our observations indicate that among the low abundant species analyzed in this study some were found to be more metabolically active compared to others, and can contribute distinct profiles of biological functions that may modulate the host-microbiota and bacteria-bacteria interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。