Pragmatic recruitment of memantine as the capping group for the design of HDAC inhibitors: A preliminary attempt to unravel the enigma of glioblastoma

务实地招募美金刚作为 HDAC 抑制剂设计的封端基团:初步尝试解开胶质母细胞瘤之谜

阅读:5
作者:Kunal Nepali, Tsung-I Hsu, Chien-Ming Hsieh, Wei-Lun Lo, Mei-Jung Lai, Kai-Cheng Hsu, Tony Eight Lin, Jian-Ying Chuang, Jing-Ping Liou

Abstract

Hurdled and marred by the notorious nature of glioblastomas (GBM) in terms of resistance to therapy and limited drug delivery into the brain, the anti-GBM drug pipeline is required to be loaded with mechanistically diverse agents. The consideration of HDAC inhibition as a prudent approach to circumvent the resistance issue in GBM spurred us to pragmatically design and synthesizes hydroxamic acids endowed with CNS penetrating ability. By virtue of the blood brain barrier permeability (BBB), memantine was envisioned as an appropriate CAP component for the construction of the HDAC inhibitors. Diverse linkers were stapled for the tetheration of the zinc binding motif with the CAP group to pinpoint an appropriate combination (CAP and linker) that could confer inhibitory preference to HDAC6 isoform (overexpressed in GBM). Resultantly, hydroxamic acid 16 was identified as a promising compound that elicited striking antiproliferative effects against Human U87MG GBM cells as well as TMZ-resistant GBM cells and P1S cells, a concurrent chemo radiotherapy (CCRT)-resistant/patient-derived glioma cell line mediated through preferential HDAC6 inhibition (IC50 = 5.42 nM). Furthermore, 16 exerted cell cycle arrest at G2 phase, induced apoptosis in GBM cells at high concentration and exhibited high BBB permeability. To add on, in-vivo study revealed that the administration of compound 16 prolonged the survival of TMZ-resistant U87MG inoculated orthotopic mice. Overall, the cumulative results indicate that 16 is a tractable CNS penetrant preferential HDAC6 inhibitor that might emerge as a potent weapon against GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。