Foaming process optimization, drying kinetics and quality of foam mat dried papaya pulp

发泡工艺优化、干燥动力学及木瓜干浆发泡质量

阅读:6
作者:Ekram Abd El-Salam Abd El-Salam, Afaf Mohammed Ali, Karima Said Hammad

Abstract

This study was performed to optimize the papaya pulp foaming process and determine the effect of drying conditions on the drying kinetics and the quality of the obtained powder. Thus, the one- factor-at-a-time experimental method, followed by 2 k full factorial design was implemented to determine the optimal conditions of the foaming process. The factors studied were egg white percentage (EW%), xanthan gum percentage (XG%), and whipping time (WT) which varied between 5-20%, 0-0.5%, and 5-20 min, respectively. The optimum conditions (EW% of 15%, XG% of 0.3% and WT of 15 min) for papaya foam expansion percentage (FE%) resulted in a foam with the highest FE% (275.64%) and desirability of 0.916. Foamed and non-foamed papaya pulp in thickness layers of 2-, 4- and 6-mm were dried at 60° and 80° C. Foaming papaya pulp reduced drying time at various layer thicknesses from 140-400 min to 60-160 min, and from 70-160 min to 30-100 min at 60° and 80° C, respectively. Foamed powder samples had the lowest dissolution times and hygroscopicity values; in addition, reconstituted solutions were lighter than non-foamed solutions. Ascorbic acid retention and total phenolic compound content was adversely affected by increased drying time. The obtained papaya powder was classified into six groups based on its quality parameters via hierarchical cluster analysis. In general, foam mat drying is a promising method for producing papaya pulp powder due to its high drying rates and better-quality product.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。