Intracellular ethanol-mediated oxidation and apoptosis in HepG2/CYP2E1 cells impaired by two active peptides from seahorse (Hippocampus kuda bleeler) protein hydrolysates via the Nrf2/HO-1 and akt pathways

海马 (Hippocampus kuda bleeler) 蛋白水解物的两种活性肽通过 Nrf2/HO-1 和 akt 通路损害 HepG2/CYP2E1 细胞内乙醇介导的氧化和细胞凋亡

阅读:7
作者:Zhong-Ji Qian, Mei-Fang Chen, Jiali Chen, Yi Zhang, Chunxia Zhou, Pengzhi Hong, Ping Yang

Abstract

Seahorse (Hippocampus kuda Bleeler) are representative marine species in aquaculture, with special value of medicine and food. In this study, the protective effects of two peptides from seahorse hydrolysates (SHP-1 and SHP-2) against ethanol-mediated oxidative stress in HepG2/CYP2E1 cells were investigated. Firstly, SHP-1 and SHP-2 presented no cytotoxicity. Compared with the ethanol-treated groups, SHP-1 and SHP-2 increased cell viability in a concentration-dependent manner. Secondly, SHP-1 and SHP-2 markedly reduced intracellular reactive oxygen species (ROS) generation, gamma-glutamyltranspeptidase (GGT) activity, and tumor necrosis factor-α (TNF-α) levels and remarkably enhanced superoxide dismutase (SOD) and glutathione (GSH) activities. SHP-1 and SHP-2 also down-regulated the expressions of GGT, bax, c-caspase-8/-9/-3, p-Akt, p-IκB-α, p-p65, p-ERK, and p-p38 but up-regulated SOD, GSH, NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and bcl-2 levels, as revealed by Western blot analysis. Moreover, SHP-1 and SHP-2 increased the mitochondrial membrane potential (MMP), reduced DNA damage, and suppressed the nuclear translocation of p65. These results suggest that two peptides from seahorse hydrolysates can be considered a potential functional biomaterial and further improve the use value of seahorse in aquaculture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。