Structural, diffuse reflectance and luminescence study of t-Mg2B2O5 nanostructures

t-Mg2B2O5 纳米结构的结构、漫反射和发光研究

阅读:7
作者:Jitender Kumar, Rajesh Kumar, Mukhtiyar Singh, Shalendra Kumar, Ravi Kumar, Sung Ok Won, Ranjeet Brajpuriya, Sourabh Dwivedi, Ram K Sharma, Ankush Vij

Abstract

We report here the structural, reflectance, photoluminescence and thermoluminescence study of t-Mg2B2O5 nanostructures synthesized using optimized combustion method relatively at much lower temperature. The rietveld refinement of X-ray diffraction data confirms single-phase triclinic crystal structure of Mg2B2O5 nanoparticles. The direct band gap determined using diffuse reflectance spectra (DRS) was 5.23 eV, which is contrary to earlier reports quoting Mg2B2O5 as indirect band gap material. To elucidate the nature of band gap in Mg2B2O5, we performed first principle calculations based on full potential linearized augmented plane-wave (FPLAPW) method, predicting the direct band gap of 5.10 eV in t-Mg2B2O5 which is in good agreement with our experimental results. The t-Mg2B2O5 nanoparticles were found to exhibit yellow-reddish photoluminescence peaking at 588 nm, attributed to various defects states. The combustion synthesized Mg2B2O5 nanocrystals exhibited ultraviolet (254 nm) responsive thermoluminescence (TL). TL glow curve of Mg2B2O5 comprises of one dominant peak around 417-428 K and less intense shoulder around 573-589 K which arouse possibility of various trapping sites or defects present in the sample. The TL analysis using general order Kitti's equations was performed to estimate the activation energies of trapping states. Owing to already well-known mechanical and thermal properties, the direct wide band gap nature and UV responsive thermoluminescence of combustion synthesized t-Mg2B2O5 nanostructures can pave way for its use in luminescence-based applications and UV dosimetry. As an additional application of Mg2B2O5, anti-biofilms activity of Mg2B2O5 nanoparticles using pseudomonas aeruginosa bacterial cells was also performed which revealed 91 ± 2.7% inhibition of biofilms formed by P. aeruginosa, respectively, at 100 μg/ml after 24 h of treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。