APOE deficiency impacts neural differentiation and cholesterol biosynthesis in human iPSC-derived cerebral organoids

APOE 缺乏会影响人类 iPSC 衍生的脑类器官中的神经分化和胆固醇生物合成

阅读:6
作者:Jing Zhao, Tadafumi C Ikezu, Wenyan Lu, Jesse R Macyczko, Yonghe Li, Laura J Lewis-Tuffin, Yuka A Martens, Yingxue Ren, Yiyang Zhu, Yan W Asmann, Nilüfer Ertekin-Taner, Takahisa Kanekiyo, Guojun Bu

Background

The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types.

Conclusions

Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.

Methods

We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90.

Results

We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/β-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. Conclusions: Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。