Metal-Semiconductor-Metal Near-Ultraviolet (~380 nm) Photodetectors by Selective Area Growth of ZnO Nanorods and SiO2 Passivation

通过选择性区域生长 ZnO 纳米棒和 SiO2 钝化制备金属-半导体-金属近紫外 (~380 nm) 光电探测器

阅读:6
作者:Soo Hyun Lee, Sang Hun Kim, Jae Su Yu

Abstract

Metal-semiconductor-metal near-ultraviolet (NUV) photodetectors (PDs) based on zinc oxide (ZnO) nanorods (NRs), operating at λ ~ 380 nm, were fabricated using conventional photolithography and hydrothermal synthesis processes. The vertically aligned ZnO NRs were selectively grown in the channel area of PDs. The performance of ZnO NR-based NUV PDs was optimized by varying the solution concentration and active channel width (W ch). For the fabricated samples, their electrical and photoresponse properties were investigated under the dark state and the illumination at wavelength of ~380 nm, respectively. For the device (W ch = 30 μm) with ZnO NRs at 25 mM, the highest photocurrent of 0.63 mA was obtained with the on/off ratio of 1720 at the bias of 5 V. The silicon dioxide passivation was also carried out to improve the photoresponse properties of PDs. The passivated devices exhibited faster rise and reset times rather than those of the unpassivated devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。