Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal

内源性肝细胞生长因子是脑室下区神经干细胞扩增和自我更新的利基信号

阅读:5
作者:Camille Nicoleau, Omar Benzakour, Fabienne Agasse, Nathalie Thiriet, Jérôme Petit, Laetitia Prestoz, Michel Roger, Mohamed Jaber, Valérie Coronas

Abstract

Neural stem cells persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ neural stem cell proliferation, self-renewal, and differentiation are not fully elucidated. In the present report, we describe a growth-stimulatory activity of liver explant-conditioned media on SVZ cell cultures and identify hepatocyte growth factor (HGF) as a major player in this effect. HGF exhibited a mitogenic activity on SVZ cell cultures in a mitogen-activated protein kinase (MAPK) (ERK1/2)-dependent manner as U0126, a specific MAPK inhibitor, blocked it. Combining a functional neurosphere forming assay with immunostaining for c-Met, along with markers of SVZ cells subtypes, demonstrated that HGF promotes the expansion of neural stem-like cells that form neurospheres and self-renew. Immunostaining, HGF enzyme-linked immunosorbent assay and Madin-Darby canine kidney cell scattering assay indicated that SVZ cell cultures produce and release HGF. SVZ cell-conditioned media induced proliferation on SVZ cell cultures, which was blocked by HGF-neutralizing antibodies, hence implying that endogenously produced HGF accounts for a major part in SVZ mitogenic activity. Brain sections immunostaining revealed that HGF is produced by nestin-expressing cells and c-Met is expressed within the SVZ by immature cells. HGF intracerebroventricular injection promoted SVZ cell proliferation and increased the ability of these cells exposed in vivo to HGF to form neurospheres in vitro, whereas intracerebroventricular injection of HGF-neutralizing antibodies decreased SVZ cell proliferation. The present study unravels a major role, both in vitro and in vivo, for endogenous HGF in SVZ neural stem cell growth and self-renewal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。