VX-984 is a selective inhibitor of non-homologous end joining, with possible preferential activity in transformed cells

VX-984 是一种选择性非同源末端连接抑制剂,可能在转化细胞中具有优先活性

阅读:5
作者:Atif J Khan, Sarah M Misenko, Aditya Thandoni, Devora Schiff, Sachin R Jhawar, Samuel F Bunting, Bruce G Haffty

Conclusions

VX-984 efficiently inhibits NHEJ, resulting in compensatory increases in alternative repair pathways, increases DSBs, and appears to affect transformed cells preferentially.

Purpose

DNA double-strand breaks (DSBs) can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). We demonstrate the selectivity of VX-984, a DNA-PK inhibitor, using assays not previously reported. Experimental design: The class switch recombination assay (CSR) in primary B cells was used to measure efficiency of NHEJ. A cellular reporter assay (U2OS EJ-DR) was used to assess the efficiency of HR and NHEJ in cells treated with VX-984. Immunofluorescence assays (IF) evaluated γ-H2AX foci for DSB repair kinetics in human astrocytes and T98G glioma cells. Western blotting was used to evaluate phosphorylation of DNA-PKcs substrates.

Results

We found a dose-dependent reduction in CSR efficiency with VX-984, and through the EJ-DR assay, dramatic dose-dependent increases in HR and mNHEJ. Immunofluorescence assays showed an inability of malignant cells to resolve γ-H2AX foci in the presence of VX-984. Radiation-induced phosphorylation of DNA-PK substrates was further reduced by treatment with VX-984. Conclusions: VX-984 efficiently inhibits NHEJ, resulting in compensatory increases in alternative repair pathways, increases DSBs, and appears to affect transformed cells preferentially.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。