PSMD4 is a novel therapeutic target in chemoresistant colorectal cancer activated by cytoplasmic localization of Nrf2

PSMD4 是 Nrf2 细胞质定位激活的化疗耐药性结直肠癌的新治疗靶点

阅读:8
作者:Ya-Min Cheng, Po-Lin Lin, De-Wei Wu, Lee Wang, Chi-Chou Huang, Huei Lee

Abstract

Nuclear Nrf2 (nNrf2) binding to the antioxidant response element may promote chemoresistance in colorectal cancer. However, the shuttling of Nrf2 between cytoplasm and nucleus in colon cancer cells has revealed the possibility that cytoplasmic location of Nrf2 (cNrf2) may play a specific role in chemoresistance. Transfection of a nuclear location sequence (NLS)-wild-type or NLS-mutated Nrf2 expression vector into a stable shNrf2 HCT116 clone using the MTT assay to examine whether chemoresistance induced by cNrf2 may be greater than nNrf2. Different specific inhibitors and small hairpin (sh)RNAs of targeting genes were used to verify the mechanistic action of cNrf2 in chemoresistance and further confirmed by an animal model. The association of cNrf2 with chemotherapeutic response in patients with colorectal cancer was statistically analyzed. The MTT assay indicated that cNrf2 may play a more important role than nNrf2 in conferring 5-fluorouracil (5-FU) and oxaliplatin resistance in HCT116 cells. Mechanistically, cNrf2-induced PSMD4 expression was responsible for chemoresistance in the NLS-mutated Nrf2-tranfected shNrf2HCT116 clone via the NF-κB/AKT/β-catenin/ZEB1 cascades. The tumor burden induced by the NLS-mutated Nrf2-transfected shNrf2HCT116 clone was completely suppressed by treatment with 5-FU in combination with carfilzomib. A higher prevalence of unfavorable chemotherapeutic response in colorectal cancer patients with cNrf2, PSMD4-positive, p-p65-positive, and nuclear β-catenin tumors was observed when compared to their counterparts. cNrf2 may play a more important role than nNrf2 in the chemoresistance of colorectal cancer. Activation of the NF-κB/AKT/β-catenin/ZEB1 cascade by PSMD4 may be responsible for cNrf2-mediated chemoresistance. Condensed abstract: CNrf2 may play a more important role than nNrf2 in conferring 5-FU and oxaliplatin resistance. This observation in patients seemed to support the findings of the cell and animal models and suggested that PSMD4 may be responsible cNrf2-mediated chemoresistance via the NF-κB/AKT/β-catenin /ZEB1 cascades.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。