Validation of a multi-omics strategy for prioritizing personalized candidate driver genes

验证多组学策略以优先考虑个性化候选驱动基因

阅读:5
作者:Li Liang, Liting Song, Yi Yang, Ling Tian, Xiaoyuan Li, Songfeng Wu, Wenxun Huang, Hong Ren, Ni Tang, Keyue Ding

Abstract

Significant heterogeneity between different tumors prevents the discovery of cancer driver genes, especially in a patient-specific manner. We previously prioritized five personalized candidate mutation-driver genes in a hyper-mutated hepatocellular carcinoma patient using a multi-omics strategy. However, the roles of the prioritized driver genes and patient-specific mutations in hepatocarcinogenesis are unclear. We investigated the impact of the tumor-mutated allele on structure-function relationship of the encoded protein and assessed both loss- and gain-of-function of these genes and mutations on hepatoma cell behaviors in vitro. The prioritized mutation-driver genes act as tumor suppressor genes and inhibit cell proliferation and migration. In addition, the loss-of-function effect of the patient-specific mutations promoted cell proliferation and migration. Of note, the HNF1A S247T mutation significantly reduced the HNF1A transcriptional activity for hepatocyte nuclear factor 4 alpha (HNF4A) but did not disrupt nuclear localization of HNF1A. The results provide evidence for supporting the validity of our proposed multi-omics strategy, which supplies a new avenue for prioritizing mutation-drivers towards personalized cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。