Brain Somatic Mutations in MTOR Disrupt Neuronal Ciliogenesis, Leading to Focal Cortical Dyslamination

MTOR 中的脑体细胞突变会破坏神经元纤毛生成,导致局灶性皮质分层

阅读:6
作者:Sang Min Park, Jae Seok Lim, Suresh Ramakrishina, Se Hoon Kim, Woo Kyeong Kim, Junehawk Lee, Hoon-Chul Kang, Jeremy F Reiter, Dong Seok Kim, Hyongbum Henry Kim, Jeong Ho Lee

Abstract

Focal malformations of cortical development (FMCDs), including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are major etiologies of pediatric intractable epilepsies exhibiting cortical dyslamination. Brain somatic mutations in MTOR have recently been identified as a major genetic cause of FMCDs. However, the molecular mechanism by which these mutations lead to cortical dyslamination remains poorly understood. Here, using patient tissue, genome-edited cells, and mouse models with brain somatic mutations in MTOR, we discovered that disruption of neuronal ciliogenesis by the mutations underlies cortical dyslamination in FMCDs. We found that abnormal accumulation of OFD1 at centriolar satellites due to perturbed autophagy was responsible for the defective neuronal ciliogenesis. Additionally, we found that disrupted neuronal ciliogenesis accounted for cortical dyslamination in FMCDs by compromising Wnt signals essential for neuronal polarization. Altogether, this study describes a molecular mechanism by which brain somatic mutations in MTOR contribute to the pathogenesis of cortical dyslamination in FMCDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。