Blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop elongates red blood cell half-life and ameliorates uremic anemia induced by 5/6th PNx in C57BL/6 mice

阻断 Na-K-ATPase 信号介导的氧化剂放大环路可延长红细胞半衰期并改善 C57BL/6 小鼠中 5/6 PNx 诱发的尿毒症性贫血

阅读:5
作者:Jiang Liu, Muhammad Chaudhry, Fang Bai, Justin Chuang, Hibba Chaudhry, Ala-Eddin Yassin Al-Astal, Ying Nie, Vincent Sollars, Komal Sodhi, Paul Seligman, Joseph I Shapiro

Abstract

We have previously demonstrated that the Na-K-ATPase signaling-mediated oxidant amplification loop contributes to experimental uremic cardiomyopathy and anemia induced by 5/6th partial nephrectomy (PNx). This process can be ameliorated by systemic administration of the peptide pNaKtide, which was designed to block this oxidant amplification loop. The present study demonstrated that the PNx-induced anemia is characterized by marked decreases in red blood cell (RBC) survival as assessed by biotinylated RBC clearance and eryptosis as assessed by annexin V binding. No significant change in iron homeostasis was observed. Examination of plasma samples demonstrated that PNx induced significant increases in systemic oxidant stress as assessed by protein carbonylation, plasma erythropoietin concentration, and blood urea nitrogen. Systemic administration of pNaKtide, but not NaKtide (pNaKtide without the TAT leader sequence) and a scramble "pNaKtide" (sc-pNaKtide), led to the normalization of hematocrit, RBC survival, and plasma protein carbonylation. Administration of the three peptides had no significant effect on PNx-induced increases in plasma erythropoietin and blood urea nitrogen without notable changes in iron metabolism. These data indicate that blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop ameliorates the anemia of experimental renal failure by increasing RBC survival.NEW & NOTEWORTHY The anemia of CKD is multifactorial, and the current treatment based primarily on stimulating bone marrow production of RBCs with erythropoietin or erythropoietin analogs is unsatisfactory. In a murine model of CKD that is complicated by anemia, blockade of Na-K-ATPase signaling with a specific peptide (pNaKtide) ameliorated the anemia primarily by increasing RBC survival. Should these results be confirmed in patients, this strategy may allow for novel and potentially additive strategies to treat the anemia of CKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。