12-Lipoxygenase inhibition suppresses islet immune and inflammatory responses and delays autoimmune diabetes in human gene replacement mice

12-脂氧合酶抑制可抑制人类基因替代小鼠的胰岛免疫和炎症反应并延缓自身免疫性糖尿病

阅读:5
作者:Titli Nargis, Charanya Muralidharan, Jacob R Enriquez, Jiayi E Wang, Kerim Kaylan, Advaita Chakraborty, Sarida Pratuangtham, Kayla Figatner, Jennifer B Nelson, Sarah C May, Jerry L Nadler, Matthew B Boxer, David J Maloney, Sarah A Tersey, Raghavendra G Mirmira

Abstract

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells and involves an interplay between β cells and cells of the innate and adaptive immune systems. We investigated the therapeutic potential of targeting 12-lipoxygenase (12-LOX), an enzyme implicated in inflammatory pathways in β cells and macrophages, using a mouse model in which the endogenous mouse Alox15 gene is replaced by the human ALOX12 gene. Our findings demonstrate that VLX-1005, a potent 12-LOX inhibitor, effectively delays the onset of autoimmune diabetes in human gene replacement non-obese diabetic (NOD) mice. By spatial proteomics analysis, VLX-1005 treatment resulted in marked reductions in infiltrating T and B cells and macrophages with accompanying increases in immune checkpoint molecules PD-L1 and PD-1, suggesting a shift towards an immune-suppressive microenvironment. RNA sequencing analysis of isolated islets from inhibitor-treated mice revealed significant alteration of cytokine-responsive pathways. RNA sequencing of polarized proinflammatory macrophages showed that VLX-1005 significantly reduced the interferon response. Our studies demonstrate that the ALOX12 human replacement gene mouse provides a platform for the preclinical evaluation of LOX inhibitors and supports VLX-1005 as an inhibitor of human 12-LOX that engages the enzymatic target and alters the inflammatory phenotypes of islets and macrophages to promote the delay of autoimmune diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。