Identification and validation of metabolism-related genes signature and immune infiltration landscape of rheumatoid arthritis based on machine learning

基于机器学习的类风湿关节炎代谢相关基因特征和免疫浸润景观的识别和验证

阅读:16
作者:Zhaoyang Guo, Yuanye Ma, Yaqing Wang, Hongfei Xiang, Huifei Cui, Zuoran Fan, Youfu Zhu, Dongming Xing, Bohua Chen, Hao Tao, Zhu Guo, Xiaolin Wu

Abstract

Rheumatoid arthritis (RA) causes irreversible joint damage, but the pathogenesis is unknown. Therefore, it is crucial to identify diagnostic biomarkers of RA metabolism-related genes (MRGs). This study obtained transcriptome data from healthy individuals (HC) and RA patients from the GEO database. Weighted gene correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and random forest (RF) algorithms were adopted to identify the diagnostic feature biomarker for RA. In addition, biomarkers were verified by qRT-PCR and Western blot analysis. We established a mouse model of collagen-induced arthritis (CIA), which was confirmed by HE staining and bone structure micro-CT analysis, and then further verified the biomarkers by immunofluorescence. In vitro NMR analysis was used to analyze and identify possible metabolites. The correlation of diagnostic feature biomarkers and immune cells was performed using the Spearman-rank correlation algorithm. In this study, a total of 434 DE-MRGs were identified. GO and KEGG enrichment analysis indicated that the DE-MRGs were significantly enriched in small molecules, catabolic process, purine metabolism, carbon metabolism, and inositol phosphate metabolism. AKR1C3, MCEE, POLE4, and PFKM were identified through WGCNA, LASSO, and RF algorithms. The nomogram result should have a significant diagnostic capacity of four biomarkers in RA. Immune infiltration landscape analysis revealed a significant difference in immune cells between HC and RA groups. Our findings suggest that AKR1C3, MCEE, POLE4, and PFKM were identified as potential diagnostic feature biomarkers associated with RA's immune cell infiltrations, providing a new perspective for future research and clinical management of RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。