Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells

重组TRAIL与Akt抑制剂哌利福星在急性髓系白血病细胞中的协同促凋亡作用

阅读:7
作者:Pier Luigi Tazzari, Giovanna Tabellini, Francesca Ricci, Veronica Papa, Roberta Bortul, Francesca Chiarini, Camilla Evangelisti, Giovanni Martinelli, Andrea Bontadini, Lucio Cocco, James A McCubrey, Alberto M Martelli

Abstract

To potentiate the response of acute myelogenous leukemia (AML) cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity, we have examined the efficacy of a combination with perifosine, a novel phosphatidylinositol-3-kinase (PI3K)/Akt signaling inhibitor. The rationale for using such a combination is that perifosine was recently described to increase TRAIL-R2 receptor expression and decrease the cellular FLICE-inhibitory protein (cFLIP) in human lung cancer cell lines. Perifosine and TRAIL both induced cell death by apoptosis in the THP-1 AML cell line, which is characterized by constitutive PI3K/Akt activation, but lacks functional p53. Perifosine, at concentrations below IC(50), dephosphorylated Akt and increased TRAIL-R2 levels, as shown by Western blot, reverse transcription-PCR, and flow cytometric analysis. Perifosine also decreased the long isoform of cFLIP (cFLIP-L) and the X-linked inhibitor of apoptosis protein (XIAP) expression. Perifosine and TRAIL synergized to activate caspase-8 and induce apoptosis, which was blocked by a caspase-8-selective inhibitor. Up-regulation of TRAIL-R2 expression was dependent on a protein kinase Calpha/c-Jun-NH(2)-kinase 2/c-Jun signaling pathway activated by perifosine through reactive oxygen species production. Perifosine also synergized with TRAIL in primary AML cells displaying constitutive activation of the Akt pathway by inducing apoptosis, Akt dephosphorylation, TRAIL-R2 up-regulation, cFLIP-L and XIAP down-regulation, and c-Jun phosphorylation. The combined treatment negatively affected the clonogenic activity of CD34(+) cells from patients with AML. In contrast, CD34(+) cells from healthy donors were resistant to perifosine and TRAIL treatment. Our findings suggest that the combination of perifosine and TRAIL might offer a novel therapeutic strategy for AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。