Outcome-Locked Cholinergic Signaling Suppresses Prefrontal Encoding of Stimulus Associations

结果锁定的胆碱能信号抑制刺激关联的前额叶编码

阅读:7
作者:Gaqi Tu, Adel Halawa, Xiaotian Yu, Samuel Gillman, Kaori Takehara-Nishiuchi

Abstract

Acetylcholine (ACh) is thought to control arousal, attention, and learning by slowly modulating cortical excitability and plasticity. Recent studies, however, discovered that cholinergic neurons emit precisely timed signals about the aversive outcome at millisecond precision. To investigate the functional relevance of such phasic cholinergic signaling, we manipulated and monitored cholinergic terminals in the mPFC while male mice associated a neutral conditioned stimulus (CS) with mildly aversive eyelid shock (US) over a short temporal gap. Optogenetic inhibition of cholinergic terminals during the US promoted the formation of the CS-US association. On the contrary, optogenetic excitation of cholinergic terminals during the US blocked the association formation. The bidirectional behavioral effects paralleled the corresponding change in the expression of an activity-regulated gene, c-Fos in the mPFC. In contrast, optogenetic inhibition of cholinergic terminals during the CS impaired associative learning, whereas their excitation had marginal effects. In parallel, photometric recording from cholinergic terminals in the mPFC revealed strong innate phasic responses to the US. With subsequent CS-US pairings, cholinergic terminals weakened the responses to the US while developing strong responses to the CS. The across-session changes in the CS- and US-evoked terminal responses were correlated with associative memory strength. These findings suggest that phasic cholinergic signaling in the mPFC exerts opposite effects on aversive associative learning depending on whether it is emitted by the outcome or the cue.SIGNIFICANCE STATEMENT Drugs compensating for the decline of acetylcholine (ACh) are used for cognitive impairment, such as Alzheimer's disease. However, their beneficial effects are limited, demanding new strategies based on better understandings of how ACh modulates cognition. Here, we report that by manipulating ACh signals in the mPFC, we can control the strength of aversive associative learning in mice. Specifically, the suppression of ACh signals during an aversive outcome facilitated its association with a preceding cue. In contrast, the suppression of ACh signals during the cue impaired learning. Considering that this paradigm depends on the brain regions affected in Alzheimer's disease, our findings indicate that precisely timed control of ACh signals is essential to refine ACh-based strategies for cognitive enhancement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。