Species-Specific Deamidation of RIG-I Reveals Collaborative Action between Viral and Cellular Deamidases in HSV-1 Lytic Replication

RIG-I 的物种特异性脱酰胺作用揭示了 HSV-1 裂解复制中病毒和细胞脱酰胺酶之间的协同作用

阅读:8
作者:Huichao Huang, Jun Zhao, Ting-Yu Wang, Shu Zhang, Yuzheng Zhou, Youliang Rao, Chao Qin, Yongzhen Liu, Yongheng Chen, Zanxian Xia, Pinghui Feng

Abstract

Retinoic acid-inducible gene I (RIG-I) is a sensor that recognizes cytosolic double-stranded RNA derived from microbes to induce host immune response. Viruses, such as herpesviruses, deploy diverse mechanisms to derail RIG-I-dependent innate immune defense. In this study, we discovered that mouse RIG-I is intrinsically resistant to deamidation and evasion by herpes simplex virus 1 (HSV-1). Comparative studies involving human and mouse RIG-I indicate that N495 of human RIG-I dictates species-specific deamidation by HSV-1 UL37. Remarkably, deamidation of the other site, N549, hinges on that of N495, and it is catalyzed by cellular phosphoribosylpyrophosphate amidotransferase (PPAT). Specifically, deamidation of N495 enables RIG-I to interact with PPAT, leading to subsequent deamidation of N549. Collaboration between UL37 and PPAT is required for HSV-1 to evade RIG-I-mediated antiviral immune response. This work identifies an immune regulatory role of PPAT in innate host defense and establishes a sequential deamidation event catalyzed by distinct deamidases in immune evasion.IMPORTANCE Herpesviruses are ubiquitous pathogens in human and establish lifelong persistence despite host immunity. The ability to evade host immune response is pivotal for viral persistence and pathogenesis. In this study, we investigated the evasion, mediated by deamidation, of species-specific RIG-I by herpes simplex virus 1 (HSV-1). Our findings uncovered a collaborative and sequential action between viral deamidase UL37 and a cellular glutamine amidotransferase, phosphoribosylpyrophosphate amidotransferase (PPAT), to inactivate RIG-I and mute antiviral gene expression. PPAT catalyzes the rate-limiting step of the de novo purine synthesis pathway. This work describes a new function of cellular metabolic enzymes in host defense and viral immune evasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。