CD24 expression identifies teratogen-sensitive fetal neural stem cell subpopulations: evidence from developmental ethanol exposure and orthotopic cell transfer models

CD24 表达可识别致畸剂敏感的胎儿神经干细胞亚群:来自发育乙醇暴露和原位细胞转移模型的证据

阅读:6
作者:Joseph D Tingling, Shameena Bake, Rhonda Holgate, Jeremy Rawlings, Phillips P Nagsuk, Jayashree Chandrasekharan, Sarah L Schneider, Rajesh C Miranda

Background

Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures.

Conclusions

Neuronal lineage committed CD24(+) cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population's cell-autonomous differentiation capacity. CD24(+) cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly.

Methods

We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer.

Results

Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24(+) NSC population, specifically the CD24(+)CD15(+) double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24(+) cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24(depleted) cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24(+) cells relative to controls. Conclusions: Neuronal lineage committed CD24(+) cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population's cell-autonomous differentiation capacity. CD24(+) cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。