Monocytes from neonates and adults have a similar capacity to adapt their cytokine production after previous exposure to BCG and β-glucan

新生儿和成人的单核细胞在接触 BCG 和 β-葡聚糖后,具有相似的适应细胞因子产生的能力

阅读:6
作者:Rhoda Namakula, L Charlotte J de Bree, Tor Henrik A Tvedt, Mihai G Netea, Stephen Cose, Kurt Hanevik

Abstract

The Bacillus Calmette-Guérin (BCG) vaccine is administered at birth in tuberculosis (TB) endemic countries. BCG vaccination is also associated with protective non-specific effects against non-tuberculous infections. This seems at least in part mediated through induction of innate immune memory in myeloid cells, a process termed trained immunity. β-glucan, a component of the fungal cell wall from Candida albicans, induces a trained immunity phenotype in human monocytes with hyper-responsiveness against unrelated pathogens. We aimed to study the capacity of BCG and β-glucan to induce a similar phenotype by examining cytokine production in cord blood monocytes following re-stimulation. We used a well-known model of in vitro induction of trained immunity. Adherent mononuclear cells from neonates and adults, which consist mainly of monocytes, were stimulated in vitro with BCG or β-glucan for one day, after which the stimulus was washed away. Cells were rested for 5 days, then restimulated with LPS. Cytokine levels were measured using ELISA. Neonate and adult monocytes responded similarly in terms of cytokine production. BCG significantly increased IL-6 responses to LPS in both neonate and adult monocytes, while β-glucan induced increases of IL-6, IL-10 and TNF production capacity. The BCG and β-glucan induced increase in cytokine production, reminiscent of trained immunity, showed similar levelsin neonatal and adult monocytes. BCG mediated changes in cytokine production shows the feasibility of this in vitro assay for further studies regarding non-specific effects of vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。