Neuromodulatory Selection of Motor Neuron Recruitment Patterns in a Visuomotor Behavior Increases Speed

视觉运动行为中运动神经元募集模式的神经调节选择可提高速度

阅读:5
作者:Urvashi Jha, Vatsala Thirumalai

Abstract

Animals generate locomotion at different speeds to suit their behavioral needs. Spinal circuits generate locomotion at these varying speeds by sequential activation of different spinal interneurons and motor neurons. Larval zebrafish can generate slow swims for prey capture and exploration by activation of secondary motor neurons and much faster and vigorous swims during escape and struggle via additional activation of primary motor neurons. Neuromodulators are known to alter the motor output of spinal circuits, but their precise role in speed regulation is not well understood. Here, in the context of optomotor response (OMR), an innate evoked locomotor behavior, we show that dopamine (DA) provides an additional layer to regulation of swim speed in larval zebrafish. Activation of D1-like receptors increases swim speed during OMR in free-swimming larvae. By analyzing tail bend kinematics in head-restrained larvae, we show that the increase in speed is actuated by larger tail bends. Whole-cell patch-clamp recordings from motor neurons reveal that, during OMR, typically only secondary motor neurons are active, whereas primary motor neurons are quiescent. Activation of D1-like receptors increases intrinsic excitability and excitatory synaptic drive in primary and secondary motor neurons. These actions result in greater recruitment of motor neurons during OMR. Our findings provide an example of neuromodulatory reconfiguration of spinal motor neuron speed modules where members are selectively recruited and motor drive is increased to effect changes in locomotor speed. VIDEO ABSTRACT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。