Antihyperglycemic Potential of Quercetin-3-glucoside Isolated from Leucaena leucocephala Seedpods via the SIRT1/AMPK/GLUT4 Signaling Cascade

通过 SIRT1/AMPK/GLUT4 信号级联,从银合欢种荚中分离的槲皮素-3-葡萄糖苷具有抗高血糖潜力

阅读:5
作者:Pranamika Sarma, Bhaswati Kashyap, Shalini Gurumayum, Srutishree Sarma, Paran Baruah, Deepsikha Swargiary, Abhipsa Saikia, Ramesh Ch Deka, Jagat C Borah

Abstract

Leucaena leucocephala. (Lam.) de Wit, a traditional medicinal plant, has been reported among the ethnic communities of Mexico, Indonesia, China, and India for the treatment of diabetes, obesity, and related complications. This study investigates the antihyperglycemic activity of the plant and its isolated active compound quercetin-3-glucoside. Further, bioactivity guided marker assisted development of an enriched bioactive fraction toward enhancing insulin sensitization was carried out. The enriched fraction was also found to contain 397.96 mg/g of quercetin-3-glucoside along with three other marker compounds, which were also isolated and identified. Quercetin-3-glucoside, out of the four isolated marker compounds from the plant, showed the most significant bioactivity when tested in palmitate-induced insulin-resistant C2C12 myotubes. The compound also showed significant upregulation of sirtuin1 (SIRT1) followed by enhancement of insulin-dependent signaling molecules SIRT1/AMPK/PGC1-α and GLUT4 translocation. Molecular dynamics studies showed the compound having stable interactions with the SIRT1 protein. SIRT1 upregulation has been associated with enhanced insulin sensitivity in skeletal muscle, increasing the glucose uptake by muscle cells. The prepared enriched fraction also modulated the SIRT1/AMPK/GLUT4 pathway. The findings of the present study may find future application toward the development of botanical or phytopharmaceutical drugs from the traditionally important plant L. leucocephala against type II diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。