Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts

人类诱导性多能干细胞来源的心肌细胞移植可改善大鼠梗死心脏的心肌功能并逆转心室重塑

阅读:7
作者:Xumin Guan, Wanzi Xu, He Zhang, Qian Wang, Jiuyang Yu, Ruyi Zhang, Yamin Chen, Yunlong Xia, Jiaxian Wang, Dongjin Wang

Background

Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have shed great light on cardiac regenerative medicine and specifically myocardial repair in heart failure patients. However, the treatment efficacy and the survival of iPSC-CMs in vivo after transplantation have yielded inconsistent

Conclusions

Human iPSC-CM grafts survived in infarcted rat hearts and restored myocardial function 4 weeks after transplantation. Cell replacement therapy also reversed ventricular remodeling, indicating the potential of iPSC-CMs for cardiac repair strategies.

Methods

Eight-week-old male Sprague-Dawley rats were randomly selected to receive an intramyocardial injection of 5% albumin solution with or without 1 × 107 human iPSC-CMs 10 days after undergoing left anterior descending (LAD) coronary artery ligation. Cyclosporine A and methylprednisolone were administered before iPSC-CM injection and until the rats were killed to prevent graft rejection. Cardiac function was evaluated by echocardiography. The survival of grafted cardiomyocytes was confirmed by observing the fluorescent cell tracer Vybrant™ CM-DiI or expression of the enhanced green fluorescent protein (eGFP) in transplanted cells, or survival was demonstrated by polymerase chain reaction (PCR)-based detection of human mitochondrial DNA. Sirius red stain was used to evaluate the fibrosis ratio. Hematoxylin-eosin staining was used to observe the formation of teratomas.

Results

Four weeks after intramyocardial injection of iPSC-CMs, animals undergoing iPSC-CM transplantation had lower mortality than the control group. Animals injected with cell-free solution (control group) demonstrated significant left ventricular (LV) functional deterioration, whereas grafting of iPSC-CMs attenuated this remodeling process. In the control group, the ejection fraction deteriorated by 10.11% (from 46.36 to 41.67%), and fractional shortening deteriorated by 9.23% (from 24.37 to 22.12%) by 4 weeks. In the iPSC-CM injection group, the ejection fraction improved by 18.86% (from 44.09 to 52.41%), and fractional shortening improved by 23.69% (from 23.08 to 28.54%). Cell labeling, tracking, and molecular biology techniques indicated that the grafted cardiomyocytes survived in the rat heart 1 month after iPSC-CM transplantation. Myocardial fibrosis was also attenuated in the iPSC-CM treatment group. Conclusions: Human iPSC-CM grafts survived in infarcted rat hearts and restored myocardial function 4 weeks after transplantation. Cell replacement therapy also reversed ventricular remodeling, indicating the potential of iPSC-CMs for cardiac repair strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。