3D-printed microplate inserts for long term high-resolution imaging of live brain organoids

3D 打印微孔板插件可用于对活体脑器官进行长期高分辨率成像

阅读:7
作者:Mariana Oksdath Mansilla, Camilo Salazar-Hernandez, Sally L Perrin, Kaitlin G Scheer, Gökhan Cildir, John Toubia, Kristyna Sedivakova, Melinda N Tea, Sakthi Lenin, Elise Ponthier, Erica C F Yeo, Vinay Tergaonkar, Santosh Poonnoose, Rebecca J Ormsby, Stuart M Pitson, Michael P Brown, Lisa M Ebert, Gu

Background

Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current

Conclusions

This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.

Results

Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids. Conclusions: This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。