Lignocellulosic Nanocrystals from Sawmill Waste as Biotemplates for Free-Surfactant Synthesis of Photocatalytically Active Porous Silica

锯木厂废料中的木质纤维素纳米晶体作为无表面活性剂合成光催化活性多孔二氧化硅的生物模板

阅读:6
作者:Maryam El Hajam, Noureddine Idrissi Kandri, Abdelaziz Zerouale, Xiaoju Wang, Jan Gustafsson, Luyao Wang, Ermei Mäkilä, Leena Hupa, Chunlin Xu

Abstract

This work presents a new approach for more effective valorization of sawmill wastes (Beech and Cedar sawdusts), which were used as new sources for the extraction of lignin-containing and lignin-free cellulose II nanocrystals (L-CNCs and CNCs). It was shown that the properties of the extracted nanocrystals depend on the nature of the used sawdust (softwood or hardwood sawdusts). L-CNCs and CNCs derived from Beech fibers were long and thin and also had a higher crystallinity, compared with those obtained from Cedar fibers. Thanks to their interesting characteristics and their high crystallinity, these nanocrystals have been used without changing their surfaces as template cores for nanostructured hollow silica-free-surfactant synthesis for photocatalysis to degrade methylene blue (MB) dye. The synthesis was performed with a simple and efficient sol-gel method using tetraethyl orthosilicate as the silica precursor followed by calcination at 650 °C. The obtained materials were denoted as B/L-CNC/nanoSiO2, B/CNC/nanoSiO2, C/L-CNC/nanoSiO2, and C/CNC/nanoSiO2, when the used L-CNC and CNC cores are from Beech and Cedar, respectively. By comprehensive analysis, it was demonstrated that the nanostructured silica were quite uniform and had a similar morphology as the templates. Also, the pore sizes were closely related to the dimensions of L-CNC and CNC templates, with high specific surface areas. The photocatalytic degradation of MB dye was about 94, 98, 74, and 81% for B/L-CNC/nanoSiO2, B/CNC/nanoSiO2, C/L-CNC/nanoSiO2, and C/CNC/nanoSiO2, respectively. This study provides a simple route to extract L-CNCs and CNCs as organic templates to prepare nanostructured silica. The different silica structures showed excellent photodegradation of MB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。