AMPK Complex Activation Promotes Sarcolemmal Repair in Dysferlinopathy

AMPK 复合物激活促进肌纤维异常蛋白病中的肌膜修复

阅读:6
作者:Hiroya Ono, Naoki Suzuki, Shin-Ichiro Kanno, Genri Kawahara, Rumiko Izumi, Toshiaki Takahashi, Yasuo Kitajima, Shion Osana, Naoko Nakamura, Tetsuya Akiyama, Kensuke Ikeda, Tomomi Shijo, Shio Mitsuzawa, Ryoichi Nagatomi, Nobukazu Araki, Akira Yasui, Hitoshi Warita, Yukiko K Hayashi, Katsuya Miyake, M

Abstract

Mutations in dysferlin are responsible for a group of progressive, recessively inherited muscular dystrophies known as dysferlinopathies. Using recombinant proteins and affinity purification methods combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that AMP-activated protein kinase (AMPK)γ1 was bound to a region of dysferlin located between the third and fourth C2 domains. Using ex vivo laser injury experiments, we demonstrated that the AMPK complex was vital for the sarcolemmal damage repair of skeletal muscle fibers. Injury-induced AMPK complex accumulation was dependent on the presence of Ca2+, and the rate of accumulation was regulated by dysferlin. Furthermore, it was found that the phosphorylation of AMPKα was essential for plasma membrane repair, and treatment with an AMPK activator rescued the membrane-repair impairment observed in immortalized human myotubes with reduced expression of dysferlin and dysferlin-null mouse fibers. Finally, it was determined that treatment with the AMPK activator metformin improved the muscle phenotype in zebrafish and mouse models of dysferlin deficiency. These findings indicate that the AMPK complex is essential for plasma membrane repair and is a potential therapeutic target for dysferlinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。