Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle

Degenerin 通道激活导致成年秀丽隐杆线虫肌肉中 caspase 介导的蛋白质降解和线粒体功能障碍

阅读:6
作者:Christopher J Gaffney, Freya Shephard, Jeff Chu, David L Baillie, Ann Rose, Dumitru Constantin-Teodosiu, Paul L Greenhaff, Nathaniel J Szewczyk

Background

Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC-105/degenerin channel activation produced muscle protein degradation via an unknown mechanism.

Conclusions

Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.

Methods

Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function.

Results

unc-105 gain-of-function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let-2 mutants that gate the hyperactive UNC-105 channel. Degradation is not suppressed by interventions suppressing proteasome-mediated, autophagy-mediated, or calpain-mediated degradation nor by suppressors of degenerin-induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced-3 or ced-4. Adult unc-105 muscles display a time-dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED-4, which is sufficient to activate CED-3 in vitro, are observed in unc-105 mitochondrial isolations. Conclusions: Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。