Potential role for histone deacetylation in chronic diazepam-induced downregulation of α1-GABAA receptor subunit expression

组蛋白去乙酰化在慢性地西泮诱导的 α1-GABAA 受体亚基表达下调中的潜在作用

阅读:6
作者:James Auta, Eleonora Gatta, John M Davis, Subhash C Pandey, Alessandro Guidotti

Abstract

Corroborating evidence indicate that the downregulation of GABAA receptor subunit expression may underlie tolerance to the anticonvulsant and anxiolytic actions of benzodiazepine (BZ) ligands that act as full allosteric modulators (FAMs) of GABA actions at a variety of GABAA receptor subtypes. We and others have shown that 10-14 days treatment with increasing doses of diazepam (a FAM) resulted in anticonvulsant tolerance and decreased the expression of the α1 GABAA receptor subunit mRNA and protein in frontal cortex. In addition, we have also shown that long-term treatment with imidazenil, a partial allosteric modulator of GABA action at selective GABAA receptor subtypes, fail to change the expression of the α1 subunit mRNA or induce tolerance to its anticonvulsant or anxiolytic action. However, little is known regarding the potential role of epigenetic mechanisms on long-term BZ-induced downregulation of GABAA receptor subunit. Therefore, we examined the role of histone acetylation and DNA methylation mechanisms on long-term diazepam-induced downregulation of the α1 subunit mRNA expression in rat frontal cortex. We found that 10 days treatment with increasing doses of diazepam but not imidazenil decreased the expression of the α1 GABAA receptor subunit mRNA and promoter acetylation in frontal cortex. In addition, we also found that 10 days treatment with diazepam but not imidazenil increased the expression of histone deacetylase (HDAC) 1 and 2 in frontal cortex. Thus, the increased expression of HDAC1 and HDAC2 (class 1 HDACs) and consequently increased histone deacetylation mechanism of this class 1 HDACs, may underlie long-term diazepam-induced decreased expression of the α1 GABAA receptor subunit mRNA in frontal cortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。