Oxidation Prevents HMGB1 Inhibition on PDGF-Induced Differentiation of Multipotent Vascular Stem Cells to Smooth Muscle Cells: A Possible Mechanism Linking Oxidative Stress to Atherosclerosis

氧化阻止 HMGB1 抑制 PDGF 诱导的多能血管干细胞向平滑肌细胞分化:一种将氧化应激与动脉粥样硬化联系起来的可能机制

阅读:8
作者:Xiaohu Meng, Wenjie Su, Xuan Tao, Mingyang Sun, Rongchao Ying, Wei Wei, Baolin Wang

Abstract

Atherosclerosis is considered as a multifactorial disease in terms of the pathogenic mechanisms. Oxidative stress has been implicated in atherogenesis, and the putative mechanisms of its action include oxidative modification of redox-sensitive signaling factors. High mobility group box 1 (HMGB1) is a key inflammatory mediator in atherosclerosis, but if oxidized it loses its activity. Thus, whether and how it participates in oxidative stress-induced atherosclerosis are not clear. The current study found that exogenous HMGB1 dose-dependently inhibited the proliferation of multipotent vascular stem cells and their differentiation to smooth muscle cells induced by platelet-derived growth factor. But oxidative modification impaired the activity of HMGB1 to produce the effect. The stem cells were regarded as the source of smooth muscle cells in vascular remodeling and neointimal hyperplasia. Therefore, the findings suggested that HMGB1 participated in oxidative stress-induced atherosclerosis presumably by targeting multipotent vascular stem cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。