Microsatellite instability at U2AF-binding polypyrimidic tract sites perturbs alternative splicing during colorectal cancer initiation

U2AF 结合多聚嘧啶束位点的微卫星不稳定性扰乱了结直肠癌发生过程中的选择性剪接

阅读:7
作者:Vincent Jonchère #, Hugo Montémont #, Enora Le Scanf #, Aurélie Siret, Quentin Letourneur, Emmanuel Tubacher, Christophe Battail, Assane Fall, Karim Labreche, Victor Renault, Toky Ratovomanana, Olivier Buhard, Ariane Jolly, Philippe Le Rouzic, Cody Feys, Emmanuelle Despras, Habib Zouali, Rémy Nicoll

Background

Microsatellite instability (MSI) due to mismatch repair deficiency (dMMR) is common in colorectal cancer (CRC). These cancers are associated with somatic coding events, but the noncoding pathophysiological impact of this genomic instability is yet poorly understood. Here, we perform an analysis of coding and noncoding MSI events at the different steps of colorectal tumorigenesis using whole exome sequencing and search for associated splicing events via RNA sequencing at the bulk-tumor and single-cell levels.

Conclusions

Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.

Results

Our results demonstrate that MSI leads to hundreds of noncoding DNA mutations, notably at polypyrimidine U2AF RNA-binding sites which are endowed with cis-activity in splicing, while higher frequency of exon skipping events are observed in the mRNAs of MSI compared to non-MSI CRC. At the DNA level, these noncoding MSI mutations occur very early prior to cell transformation in the dMMR colonic crypt, accounting for only a fraction of the exon skipping in MSI CRC. At the RNA level, the aberrant exon skipping signature is likely to impair colonic cell differentiation in MSI CRC affecting the expression of alternative exons encoding protein isoforms governing cell fate, while also targeting constitutive exons, making dMMR cells immunogenic in early stage before the onset of coding mutations. This signature is characterized by its similarity to the oncogenic U2AF1-S34F splicing mutation observed in several other non-MSI cancer. Conclusions: Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。