Triple Junction Segregation Dominates the Stability of Nanocrystalline Alloys

三结偏析决定纳米晶合金的稳定性

阅读:7
作者:Annie K Barnett, Omar Hussein, Maher Alghalayini, Alejandro Hinojos, James E Nathaniel 2nd, Douglas L Medlin, Khalid Hattar, Brad L Boyce, Fadi Abdeljawad

Abstract

We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。