Synthesis of Cobalt-Doped TiO2 Based on Metal-Organic Frameworks as an Effective Electron Transport Material in Perovskite Solar Cells

基于金属有机骨架的钴掺杂 TiO2 的合成作为钙钛矿太阳能电池中的有效电子传输材料

阅读:5
作者:Thi My Huyen Nguyen, Chung Wung Bark

Abstract

In this study, Co-doped TiO2 was prepared successfully using a solvothermal method with trimesic acid (H3BTC) as an organic framework to form the Co-doped Ti metal-organic framework (Co-doped Ti-MOF). By thermally decomposing the Co-doped Ti-MOF in air, the framework template was removed, and porous Co-doped TiO2 was obtained. The crystal structure of the material was analyzed using X-ray diffraction. The morphology was examined using scanning electron microscopy (SEM) and focused ion beam SEM. The large specific surface area was determined to be 135.95 m2 g-1 using Brunauer-Emmett-Teller theory. Fourier transform infrared spectroscopy verified the presence of Ti-O-Ti and Co-O vibrations in the as-prepared sample. Furthermore, the results of UV-vis spectroscopy showed that doping with Co remarkably improved the absorption ability of Ti-MOF toward the visible-light region with a band gap energy of 2.38 eV (λ = 502 nm). Steady-state photoluminescence and electrochemical impedance spectroscopy were conducted to illustrate the improvement of electron transfer in the doped material further. The optimum power conversion efficiency of solar cells using 1 wt % Co-doped TiO2 as an electron transport layer was found to be 15.75%, while that of solar cells using commercial dyesol TiO2 is only 14.42%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。