CDKN2A deregulation in fatty liver disease and its accelerative role in the process of lipogenesis

脂肪肝疾病中的 CDKN2A 失调及其在脂肪生成过程中的加速作用

阅读:6
作者:Zhi Zhang, Huiqing Wen, Bangjian Peng, Jun Weng, Fanhong Zeng

Abstract

Previous literature has indicated that cyclin-dependent kinase inhibitor 2 A (CDKN2A) is upregulated, while the Protein Inhibitor of Activated STAT1 (PIAS1) is downregulated in the liver tissues of obese mice. The current study aimed to investigate the relationship between CDKN2A and PIAS1 in the lipogenesis of fatty liver disease. In the C57BL/6J db/db mouse model and hepatocyte model of fatty liver, the expression pattern of CDKN2A, PIAS1, Protein arginine methyltransferase 1 (PRMT1) and CASP8 and FADD-like apoptosis regulator (CFLAR) was characterized by RNA quantitative and Western blot analysis. The lipogenesis-related genes (Srebp1c and Fas) in the liver tissues and cells were employed in the assessment of lipogenesis in response to gain- or loss-of-function of CDKN2A, PIAS1, PRMT1, and CFLAR, while triglyceride and fat content were evaluated in relation to fat accumulation. Western blot analysis was conducted to determine c-Jun amino-terminal kinase (JNK) phosphorylation, while the ubiquitination of CFLAR and SUMOylation of PIAS1 was examined by immunoprecipitation. PIAS1 and CFLAR were downregulated, while CDKN2A, PRMT1, and phosphorylation of JNK was elevated in the tissues and cells of the fatty liver models. Our results suggested that CDKN2A enhanced the SUMOylation of PIAS1 to reduce the expression of PIAS1. PRMT1 downregulated CFLAR by triggering its ubiquitination, while CFLAR repressed phosphorylation of JNK. The in vitro and in vivo results indicated that CDKN2A silencing prevented lipogenesis and fat accumulation by impairing the PRMT1-dependent ubiquitination of CFLAR and blocking the phosphorylation of JNK. Taken together, the central observations of our study demonstrate that targeting CDKN2A contributes to the suppression of lipogenesis and fat accumulation in fatty liver disease. The findings of our study highlight the potential of CDKN2A as a promising target against fatty liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。