Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis

RACK1 在气道上皮间质转化和细胞凋亡中的双重作用

阅读:5
作者:Yue Pu, Yuan-Qi Liu, Yan Zhou, Yi-Fan Qi, Shi-Ping Liao, Shi-Kun Miao, Li-Ming Zhou, Li-Hong Wan

Abstract

Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF-β1. RACK1 is the downstream target gene of TGF-β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS-2B cells were cultured and exposed to recombinant soluble human TGF-β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA-challenged mice, as well as TGF-β1-induced apoptosis and EMT of BEAS-2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF-β1 up-regulated EMT related protein levels (N-cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF-β1-induced N-cadherin and Snail up-regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF-β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF-β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。