Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons

利鲁唑在培养的小鼠结状神经节神经元的三个亚群中激活 TREK 电流

阅读:5
作者:Diego Fernández-Fernández, Alba Cadaveira-Mosquera, Lola Rueda-Ruzafa, Salvador Herrera-Pérez, Emma L Veale, Antonio Reboreda, Alistair Mathie, J Antonio Lamas

Abstract

Two-pore domain potassium channels (K2P) constitute major candidates for the regulation of background potassium currents in mammalian cells. Channels of the TREK subfamily are also well positioned to play an important role in sensory transduction due to their sensitivity to a large number of physiological and physical stimuli (pH, mechanical, temperature). Following our previous report describing the molecular expression of different K2P channels in the vagal sensory system, here we confirm that TREK channels are functionally expressed in neurons from the mouse nodose ganglion (mNG). Neurons were subdivided into three groups (A, Ah and C) based on their response to tetrodotoxin and capsaicin. Application of the TREK subfamily activator riluzole to isolated mNG neurons evoked a concentration-dependent outward current in the majority of cells from all the three subtypes studied. Riluzole increased membrane conductance and hyperpolarized the membrane potential by approximately 10 mV when applied to resting neurons. The resting potential was similar in all three groups, but C cells were clearly less excitable and showed smaller hyperpolarization-activated currents at -100 mV and smaller sustained currents at -30 mV. Our results indicate that the TREK subfamily of K2P channels might play an important role in the maintenance of the resting membrane potential in sensory neurons of the autonomic nervous system, suggesting its participation in the modulation of vagal reflexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。