CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants

基于CRISPR/Cas9发现调控玉米雄性不育的转录因子及其在植物中的功能保守性

阅读:7
作者:Yilin Jiang, Xueli An, Ziwen Li, Tingwei Yan, Taotao Zhu, Ke Xie, Shuangshuang Liu, Quancan Hou, Lina Zhao, Suowei Wu, Xinze Liu, Shaowei Zhang, Wei He, Fan Li, Jinping Li, Xiangyuan Wan

Abstract

Identifying genic male-sterility (GMS) genes and elucidating their roles are important to unveil plant male reproduction and promote their application in crop breeding. However, compared with Arabidopsis and rice, relatively fewer maize GMS genes have been discovered and little is known about their regulatory pathways underlying anther and pollen development. Here, by sequencing and analysing anther transcriptomes at 11 developmental stages in maize B73, Zheng58 and M6007 inbred lines, 1100 transcription factor (TF) genes were identified to be stably differentially expressed among different developmental stages. Among them, 14 maize TF genes (9 types belonging to five TF families) were selected and performed CRISPR/Cas9-mediated gene mutagenesis, and then, 12 genes in eight types, including ZmbHLH51, ZmbHLH122, ZmTGA9-1/-2/-3, ZmTGA10, ZmMYB84, ZmMYB33-1/-2, ZmPHD11 and ZmLBD10/27, were identified as maize new GMS genes by using DNA sequencing, phenotypic and cytological analyses. Notably, ZmTGA9-1/-2/-3 triple-gene mutants and ZmMYB33-1/-2 double-gene mutants displayed complete male sterility, but their double- or single-gene mutants showed male fertility. Similarly, ZmLBD10/27 double-gene mutant displayed partial male sterility with 32.18% of aborted pollen grains. In addition, ZmbHLH51 was transcriptionally activated by ZmbHLH122 and their proteins were physically interacted. Molecular markers co-segregating with these GMS mutations were developed to facilitate their application in maize breeding. Finally, all 14-type maize GMS TF genes identified here and reported previously were compared on functional conservation and diversification among maize, rice and Arabidopsis. These findings enrich GMS gene and mutant resources for deeply understanding the regulatory network underlying male fertility and for creating male-sterility lines in maize.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。