Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation

饮食盐促进缺血性脑损伤并与实质迁移小体的形成有关

阅读:5
作者:Antje Schmidt-Pogoda, Jan-Kolja Strecker, Marie Liebmann, Christina Massoth, Carolin Beuker, Uwe Hansen, Simone König, Sarah Albrecht, Stefanie Bock, Johanna Breuer, Clemens Sommer, Nicholas Schwab, Heinz Wiendl, Luisa Klotz, Jens Minnerup

Abstract

Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic stroke. The migrasome was previously described in vitro as a migrating organelle, which incorporates and dispatches cytosol of surrounding cells and plays a role in intercellular signaling, whereas a pathophysiological meaning has not been elaborated. We here confirm previously reported characteristics of the migrasome in vivo. Immunohistochemistry, electron microscopy and proteomic analyses further demonstrate that the migrasome incorporates and dispatches cytosol of surrounding neurons following stroke. The clinical relevance of these findings is emphasized by neuropathological examinations, which detected migrasome formation in infarcted brain parenchyma of human stroke patients. In summary, we demonstrate that high-salt diet aggravates stroke outcomes, and we characterize the migrasome as a novel mechanism in acute stroke pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。