Discussion
We investigate how these pathways are affected by the trypsin-EDTA pre-treatment and conclude by offering possible explanations for this phenomenon. We found that nanodiamonds are internalized via different pathways. Clathrin-mediated endocytosis proves to be the dominating mechanism. Trypsin-EDTA treatment increases particle uptake and affects the uptake mechanism.
Methods
In previous research, we found that HT-29 cells (a colon cancer cell line), which are notoriously difficult in the context of nanodiamond internalization, show increased uptake rates, when pre-treated with trypsin- ethylenediaminetetraacetic acid (trypsin-EDTA). However, the uptake mechanism has not been studied before. This article focuses on a more detailed investigation of the reasons underlying this phenomenon. We start by identifying the timing of fluorescent nanodiamond (FND) uptake in trypsin-EDTA pre-treated cells. We then use a combination of chemical inhibitors and Immunocytochemistry to identify the main pathways employed by HT-29 cells in the internalization process.
